4725 Further Pure Mathematics 1

1	(i)	(1	1
1		5	-1)

4725

B1 Two elements correct

B1 All four elements correct 2

(ii) EITHER

$$\frac{1}{3}\begin{pmatrix} 2 & -1 \\ -5 & 4 \end{pmatrix}$$

Both diagonals correct **B1** Divide by determinant

OR

Solve sim. eqns. 1st column correct **B**1

2nd column correct **B1**

2 (i) 0.927 or 53.1° **B1** Correct modulus

B1 Correct argument, any equivalent form

(ii)(a)

(b)

A(3, 4)

2 Circle centre A(3, 4)**B**1

Through O, allow if centre is (4, 3)

B1 2 **B**1

A1

M1

B1

2

Half line with +ve slope

B1 Starting at (3, 0)

3

B1 Parallel to OA, (implied by correct arg shown)

3 (i) (r+1)!

M1 Common denominator of (r + 1)! or r!(r + 1)!

Express terms as differences using (i)

(ii)

2

At least 1st two and last term correct **A1**

Obtain given answer correctly

M1 Show pairs cancelling

Correct answer a.e.f. **A1** 4

B1 Establish result is true, for n = 1 (or 2 or 3)

Attempt to multiply A and Aⁿ, or vice versa **M**1

Correct process for matrix multiplication **M1**

Obtain 3^{n+1} , 0 and 1 Obtain $\frac{1}{2}(3^{n+1}-1)$ **A1 A1**

Statement of Induction conclusion, only **A1**

if 5 marks earned, but may be in body of working

6

4725 Mark Scheme June 2008

5		M1 Express as difference of two series	
		M1 Use standard results	
	$\frac{1}{4}n^2(n+1)^2 - \frac{1}{6}n(n+1)(2n+1)$	A1 Correct unsimplified answer	
	7 0	M1 Attempt to factorise	
		A1 At least factor of $n(n+1)$	
	$\frac{1}{12}n(n+1)(3n+2)(n-1)$	A1 Obtain correct answer	
	12		
		6	
6 (i)	3 – i	B1 Conjugate stated	
		1	
(ii)	EITHER	M1 Use sum of roots	
		A1 Obtain correct answer	
		M1 Use sum of pairs of roots	
		A1 Obtain correct answer	
		M1 Use product of roots	
	$a = -8, \ b = 22, \ c = -20$	A1 Obtain correct answers	
		6	
	OR	M1 Attempt to find a quadratic factor	
		A1 Obtain correct factor	
		M1 Expand linear and quadratic factors	
	a = -8, b = 22, c = -20 OR	A1A1A1 Obtain correct answers	
		M1 Substitute 1 imaginary & the real root in	ito ec
		M1 Equate real and imaginary parts	
		M1 Attempt to solve 3 eqns.	
	a = -8, $b = 22$, $c = -20$	A1A1A1 Obtain correct answers	
7 (i)		B1 Enlargement (centre <i>O</i>) scale factor 6	_
()		1	
(ii)		B1 Reflection	
		B1 Mirror line is $y = x$	
		2	
(iii))	B1 Stretch in y direction	
()		B1 Scale factor 6, must be a stretch	
		2	
(iv)		B1 Rotation	
(11)			
(11)		B1 36.9° clockwise or equivalent	

8	$\alpha + \beta = -k$	B1	State or use correct value
	$\alpha\beta = 2k$	B 1	State or use correct value
		M1	Attempt to express sum of new roots in terms of $\alpha + \beta$, $\alpha\beta$
	$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$	A1	Obtain correct expression
	$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{1}{2}(k-4)$	A1	Obtain correct answer a.e.f.
	$\alpha'\beta'=1$	B 1	Correct product of new roots seen
	$x^2 - \frac{1}{2}(k-4)x + 1 = 0$	B1ft	Obtain correct answer, must be an eqn.
	2	7	
			Alternative for last 5 marks
		M1	Obtain expression for $u = \frac{\alpha}{\beta}$ in terms of k
			α or k and β
		A1	Obtain a correct expression
		A1	rearrange to get α in terms of u
		M1	Substitute into given equation
		A1	Obtain correct answer
) (i)		M1	Attempt to equate real and imaginary parts of $(x + iy)^2$ and $5 + 12i$
	$x^2 - y^2 = 5$ and $xy = 6$	A1	Obtain both results
	·	M 1	Eliminate to obtain a quadratic in x^2 or y^2
	$\pm(3+2i)$	M1	Solve a 3 term quadratic & obtain x or y
		<u>A1</u>	Obtain correct answers as complex nos.
		5	
(ii)	5 – 12i	B1B1 2	Correct real and imaginary parts
(iii)		<u>M</u> 1	Attempt to solve a quadratic equation
	2 5 1 10:	A1	Obtain correct answers
	$x^2 = 5 \pm 12i$	ΑI	Obtain correct answers
	$x^2 = 5 \pm 12i$ $x = \pm (3 \pm 2i)$		Each pair of correct answers a.e.f.

4725		Mark Scheme	June 2008
10 (i)		M1 <u>A1</u>	Find value of det AB Correct value 2 seen
(ii)		<u>2</u> M1	Show correct process for adjoint entries
		A1 B1	Obtain at least 4 correct entries in adjoint Divide by their determinant
	$ (\mathbf{AB})^{-1} = \frac{1}{2} \begin{pmatrix} 0 & 3 & -1 \\ 0 & -1 & 1 \\ 2 & 6 - 3a & a - 6 \end{pmatrix} $	A1	Obtain completely correct answer
	- CANALIDA	4	a land pla
(iii)	EITHER	M1 A1	State or imply $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$ Obtain $\mathbf{B}^{-1} = (\mathbf{AB})^{-1} \times \mathbf{A}$
		A1 M1	Correct multiplication process seen
		A1	Obtain three correct elements
	$\mathbf{B}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ -6 & 2 & -2 \end{pmatrix}$	A1	All elements correct
	OR	5 M1 A1 M1 A1	Attempt to find elements of B All correct Correct process for B ⁻¹ 3 elements correct All elements correct