4725 Further Pure Mathematics 1

8		$\alpha+\beta=-k$	B1	State or use correct value
		$\alpha \beta=2 k$	B1	State or use correct value
			M1	Attempt to express sum of new roots in terms of $\alpha+\beta, \quad \alpha \beta$
		$\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}$	A1	Obtain correct expression
		$\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{1}{2}(k-4)$	A1	Obtain correct answer a.e.f.
		$\alpha^{\prime} \beta^{\prime}=1$	B1	Correct product of new roots seen
		$x^{2}-\frac{1}{2}(k-4) x+1=0$	$\begin{gathered} \text { B1ft } \\ \hline 7 \end{gathered}$	Obtain correct answer, must be an eqn.
			M1	Alternative for last 5 marks Obtain expression for $u=\frac{\alpha}{\beta}$ in terms of k and α or k and β
			$\begin{aligned} & \mathbf{A 1} \\ & \mathbf{A 1} \\ & \mathbf{M 1} \\ & \mathbf{A 1} \end{aligned}$	Obtain a correct expression rearrange to get α in terms of u Substitute into given equation Obtain correct answer
9 (i)			M1	Attempt to equate real and imaginary parts of $(x+\mathrm{i} y)^{2}$ and $5+12 \mathrm{i}$
		$x^{2}-y^{2}=5$ and $x y=6$	A1	Obtain both results
		$\pm(3+2 \mathrm{i})$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ 5 \end{gathered}$	Eliminate to obtain a quadratic in x^{2} or y^{2} Solve a 3 term quadratic $\&$ obtain x or y Obtain correct answers as complex nos.
	(ii)	$5-12 \mathrm{i}$	$\begin{aligned} & \text { B1B1 } \\ & 2 . \\ & \hline \end{aligned}$	Correct real and imaginary parts
(iii)			M1	Attempt to solve a quadratic equation
		$x^{2}=5 \pm 12 \mathrm{i}$	A1	Obtain correct answers
		$x= \pm(3 \pm 2 \mathrm{i})$	$\begin{aligned} & \text { A1A1 } \\ & \begin{array}{l} 4 \\ \hline \end{array} \end{aligned}$	Each pair of correct answers a.e.f.

10 (i)		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline 2 \\ & \hline \end{aligned}$	Find value of $\operatorname{det} \mathbf{A B}$ Correct value 2 seen
(ii)	$(\mathbf{A B})^{-1}=\frac{1}{2}\left(\begin{array}{ccc}0 & 3 & -1 \\ 0 & -1 & 1 \\ 2 & 6-3 a & a-6\end{array}\right)$	M1	Show correct process for adjoint entries
		A1	Obtain at least 4 correct entries in adjoint
		B1	Divide by their determinant
		A1	Obtain completely correct answer
		4	
(iii) EITHER		M1	State or imply $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$ Obtain $\mathbf{B}^{-1}=(\mathbf{A B})^{-1} \times \mathbf{A}$
		M1	Correct multiplication process seen
		A1	Obtain three correct elements
$\mathbf{B}^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 2 \\ -6 & 2 & -2\end{array}\right)$		A1	All elements correct
OR		5 M1	Attempt to find elements of B
		A1	All correct
		M1	Correct process for \mathbf{B}^{-1}
		A1	3 elements correct
		A1	All elements correct

